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RENDERING THROUGH ITERATED FUNCTION SYSTEMS

HUW JONES AND MAGNUS MOAR
Centre for Electronic Arts, Middlesex University, Cat Hill, Barnet EN4 8HT,

United Kingdom
E-mail: <d.h.jones, m.moar>@mdx.ac.uk

Iterated Function Systems (IFS) have been widely used for image compression and for generating
fractal objects. Using barycentric coordinates and an extension of the concept, a range of
rendering methods, such as Lambert, Gouraud and Phong shading, can be generated using IFS. By
rendering a scattered collection of individual points using z-buffer and shadow buffer, the
problems of clipping, hidden surface elimination and shadow generation are reduced to very
simple forms. The method is relatively simple to program, but will not achieve the high speeds of
current sophisticated rendering methods.

1 TIterated functions systems and the chaos game

Tterated function systems (IFS) have been used to generate models of fractal objects” > and
for image compression” *. From the definitions of relatively few functions, often complex
and unique figures can be drawn. Given n contractive transformations {fy, i, £, ... £}
and an arbitrary starting point, a unique image in 2D or object in 3D is created by:

Given an initial point Po

Loop fori = 1 to a large value
Select function £ at random from {f;, f;, ... £}
Set point P; = £(Pi1)
Plot point P;

End loop

This algorithm, often referred to as ‘the chaos game’, generates a Markov chain’ of
points, each new point dependent only on the previous one. Some stray points may be
created initially (avoided by looping a few times before plotting or by setting Py inside
the object), but points are soon “attracted’ into the image or object defined, the ‘attractor’
cannot then be escaped. Contractive transformations reduce the distance between distinct
points. Uniform point density for each transformation is achieved when the probability of
selection is proportional to contraction ratios (the fractional area or volume reduction), but
uniform point density within the image is only achieved if the transformations have non-
overlapping image sets.

The theoretical development of IFS” “ and most subsequent uses concentrate on
affine transformations, familiar to computer graphics experts as combinations of
translations, scalings and rotations’. These standard rules have been relaxed in a number
of studies, for example, Groller’ added ‘tapering’ and ‘twisting’ functions, Frame and
Angers® used hi%her level polynomials, Jones and Campa’ used randomised functions and
Jones and Moar° used functions involving moduli. It has been shown by Hart'' that,
‘even the contractivity condition can be weakened to so called eventual contractivity’.

A particularly simple example of the ‘chaos game’ that generates a Sierpinski gasket

or triangle (Fig. 1) is

1, 2




168

Given three vertices Vo, Vi, V2

Set point Py =V,

Loop fori = 1 to a large value
Select vertex V; at random from {V,, Vi, V,}
Set point P; = 0.5(V; + Pi,)
Plot point P;

End loop

Figure 1. A Sierpinski gasket, based on an equilateral triangle, created by the chaos game algorithm. The
method produces similar results for any form of triangle.

Point P; is half way between the previous point Pi; and the randomly selected vertex Vi.
Setting Po = V, puts the initial point inside the attractor, so no stray points are created.
As well as regular geometric forms, IFS can successfully create plant like images
exhibiting self similarity™ '°

2 Barycentric coordinates

A point P in a triangle VoV, V; (Fig. 2) can be represented by barycentric coordinates (a,
b) where

P=Vo+ a(Vl - Vo) + b(VZ - VO),

using P, V,, and so on as position vectors. This is a unique definition of P, witha>0, b
>0and (@a+b)<1.

Vv,

\£ \
a

Figure 2. Barycentric coordinates (a, b) identify an interior point in a triangle.
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These conditions are easily seen by identifying barycentric coordinates as a mapping of
the general triangle VoViV; to ViV V', where Vg = (0, 0), V' = (1, 0) and V', = (0, 1),
in a 2D Cartesian space (Fig. 3). :

V'O

Figure 3. Mapping of the triangle VoV, V; into a Cartesian space to show conditions on a and b.

a and b are the fractions of edges VoV, and V,V; that are traversed in order to reach P from
Vo. Rearranging the definition of P gives its position in terms of the triangle vertices as

P=(1-a-b)Vo+aV,+ bV

clearly a weighted mean of Vo, Vi, V; with weights (1 —~a — b), a and b. Conditions
on a and b show these weights are non-negative and add to one, so P is the centre of mass
of (1 —a-b), aand b placed at Vo, Vi, V, respectively. This is analogous to use of
blending functions in spline curves, is independent of order of selection of vertices and has
implications for triangle shading.

3 The chaos game and barycentric coordinates

The functions implicit in the ‘chaos game’ map points from within the initial triangle to
a half scaled triangle located at the randomly selected vertex, for example when vertex V,
is selected, Fig. 4 shows the shaded half scale triangle, VoW,W; (W; is the edge mid
point opposite V). In the chaos game, if P, has barycentric coordinates (a, b),

Pi.1 = (1 —a-—- b)Vo + aV1 + sz,

the barycentric coordinates of the subsequent point P; = 0.5(V; + Pi;) can be found for
each selection of V;.

1. When Vi = Vo,
P;=(1-0.5a~0.5b)V, + 0.5aV; + 0.5bV,,
so the barycentric coordinates are (0.5a, 0.5b);
2. whenV;=V,,
P; =(0.5-0.5a—-0.5b)Vo + 0.5(1 + a)V; + 0.5bV,
=(1-0.5(1+a)-0.5b)Vo+ 0.5(1 + a)Vy + 0.5bV;,
so the barycentric coordinates are (0.5(1 + a), 0.5b);
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3. whenV; =V,
P; =(0.5-0.5a—0.5b)Vo+ 0.5aV; + 0.5(1 + b)V,,
=(1-0.5a—-0.5(1 +b))Vo+0.5aV; +0.5(1 + b)V,,
so the barycentric coordinates are (0.5a, 0.5(1 +b)).

Thus, the version of the chaos game that generates a Sierpinski triangle can be rewritten
as:

Given three vertices Vo, Vi, V2
Seta=0,b=0
Loop fori = 1 to a large value
Select j at random from {0, 1, 2}
Case
j=0:seta=0.5a, b=0.b;
j=1:seta=0.5(1+ a),b=0.5b;
j=2:seta=0.5a,b=0.5(1+Db);
End case
Set point P; to have barycentric coordinates (a, b)
Plot point P;
End loop

This is slightly more complicated than the original form, but has interesting implications
discussed later. Note that multiplication by 0.5 may be implemented very efficiently in
most programming languages.

4 Rendering by IFS

4.1 Triangle rendering

Standard rendering algorithms “fill” a polygon with colour. Some algorithms require that
all the polygon faces are reduced to sets of triangles, so the triangle is the essential shape.
The chaos game applied to triangle VoV, V, maps the original triangle to each of the sub-
triangles VoW, W1, W,ViW, and W, W,V; leaving internal triangle WoW;W, unfilled
(Figs. 1, 5). The “collage theorem’” indicates that a shape is generated by covering it
with copies of itself, so to fill VoViV,, a fourth transformation is needed to map itself into
the half scale congruent triangle WoW,;W,. The point P with barycentric coordinates (a,
b) in V;V1V, should be mapped into P' with the same barycentric coordinates (a, b) in
WoW W, (Flg 5) This sets

P'=(1-a-b)W, +aW; + bW,
The W; are the mid points of triangle edges, so
P'=0.5(1 —a—b)(Vy+ V5)+0.5a(Vo + V3) + 0.5b(Vo + Vy),
which can be rearranged as
P'=(1-0.5(1-2a)-0.5(1 -b))Vo+0.5(1 —a)Vy + 0.5(1 —b)V,,
showing that the barycentric coordinates of P' in the original triangle V,V,V, are (0.5(1 -

a), 0.5(1 - b)). This again finds the point P' as a weighted mean of triangle vertices Vo,
Vi, V2 with weights 0.5(a + b), 0.5(1 — a) and 0.5(1 — b) respectively. The weights are
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all between 0 and 1 due to similar conditions on a and b, and they add to one, so this is
a valid weighted mean. With equal probabilities of selection of non-overlapping
transformations, each with equal contraction ratio of 0.5, triangle VoV, V- is filled with
uniform point density by the following adapted chaos game.

Given three vertices Vo, Vi, V2
Seta=0,b=0 /1 arbitrarily chooses V as the first point
Loop fori = 1 to a large value

Select j at random from {0, 1, 2, 3}

=0:seta= 0.5a, b= 0.5b;
j=1:seta=0.5(1+ a), b= 0.5b;
j=2:seta=0.5a,b=0.5(1+b),
j=3:seta=0.5(1~-a),b=05(1-b);

End case
Set point P; to have barycentric coordinates (a, b)
Plot point P;
End loop
v,
Q 1 R

Vo

Figure 4. Scan line rendering: the internal point P lics on a scan line through Q and R.

In scan line rendering, the colours of interior points of polygons are calculated by linear
interpolation, initially along edges and then along a scan line, of pre-calculated colour (for
Gouraud shading) or surface normals (for Phong shading) at polygon vertices®. In Fig. 4,
a scan line cuts the ‘active’ edges V.V, and V,V; at Q and R. If I(V}) is the colour
intensity at Vi, the colour at Q is

I(Q) = (1 - QI(V2) + gl(Vo),
where q = V2Q/VaVo. With 1= V,R/V,V;
IR) = (1 -DI(V2) +1I(V1),
and with p = QP/QR,
IP) = (1 - pIQ) + pI(R).

In practice, these formulae are used to pre-calculate offset colour changes and positional
changes of P, Q and R for horizontal and vertical pixel moves.
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The method has a slight distorting effect, as the perspective projection of the 3D triangle
is non-affine. Points closer to the observer should display smaller colour change per pixel,
but the method gives a uniform change in the image space, rather than in the world
space’. The method is, in any case, a distortion of the correct physical model. The
algorithms for Gouraud and Phong shading allow updating of the active edge list when
the scan line passes a vertex, so ‘spans’ like QR can be easily identified and updated for
polygons other than triangles.

For a triangle with an interior point P known through its barycentric coordinates (a,
b), colour can be established directly from the weighted average of the colour (or surface
normal) values at the vertices, without reference to scan line directions, For Gouraud
shading,

I(P) = (1 — a— b)I(Vy) + al(Vy) + bI(V2).
For Phong shading, the mean surface normal vector is
n(P) = Normalise[(1 — a — b)n(Vo) + an(V}) + bn(V2)],

where n(P) is the surface normal allocated to point P, and Normalise is a function to
reduce a vector to unit length. The argument of a ‘“Normalise’ function cannot have zero
length, this would only occur in the case of a degenerate or non-manifold object.

This gives an easy way to fill triangles using IFS with barycentric coordinates,
which can be shown to give exactly the same results as standard Gouraud and Phong
shading. The barycentric method is independent of the scan line direction, and this
equivalence indicates similar independence of the traditional methods from the scan line
direction for triangle shading, which is not the case for polygons with more edges.

Figure 5. Extended barycentric coordinates identify an inerior point P in a quadrilateral.

4.2 Quadrilateral rendering

We can identify an internal point P of a quadrilateral VoViV,Vs using ‘extended
barycentric coordinates’ (a, b). There is a unique line WoW, which passes through P so
that the edges VoV: and V3V, are divided in equal proportion, a:(1 — a) (Fig. 5). In other
words,

Wo = (1 - a)Vo + aVl,
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W;=(1-2a)V; +aV,,
where 0 <a < 1. IfP lies a proportion b along WW,
P=(1-b)W,+ bW,

where 0 <b < 1. This effectively maps any interior point of the quadrilateral into a unit
square (Fig. 6), where

Vo = (0, 0), V' = (1, 0), V2 = (1, 1) and V3 = (0, 1),

V' W, V',
1-b
- PV
b
a 1-a
Vi W, VY

Figure 6. Mapping of the quadrilateral of figure 5 into a unit square

This is equivalent to the effect of Fig. 3 for a triangle. The meaning of an internal point is
obvious for a planar convex quadrilateral (Fig. 5). For non-planar vertices, the point P
lies on a bi-linear patch, generating a form of hyperbolic paraboloid'’. For planar concave
quadrilaterals, P may lie outside the triangle boundary, but within the convex hull of the
vertices. Such quadrilaterals can be identified and split into triangles when rendering,
although this allows the ambiguity of two possible interpretations.

Substituting for W, and W into the expression for p gives

P =(1-b){(1 - 2)Vo +aVyi}+ b{(l - a)V; + aV},
P=(1-a)(1-b)Vo+a(l-b)V, +abV,+ (1 — a)bVs,

giving P as a weighted mean of the four vertices. This is valid as each of the four
weights(1 — a)(1 - b), a(1 — b), (1 — a)b and ab lies between zero and 1 from conditions
on a and b, and it is easy to establish that their sum is one. This gives a direct method
for proportional shading from vertex colours or normals, which is the same as standard
scan line methods only when WoW happens to be aligned with a scan line (Fig. 7). The
IFS method is an improvement on standard methods, in that the shading allocated to a
point is not dependent on quadrilateral orientation.

The chaos game applied to the four vertices of a square (Fig. 6) will fill the square”.
By selecting V'; to be one of the vertices V', V', V'; or V'; at random, and finding the
mid point of P' and V', we have the essential step of the chaos game that will fill the
square V'oV'1 V2V, It should be clear that the required mid points have coordinates
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P' and V' (0.5a, 0.5b);

P'and V'i: (0.5(1 + a), 0.5b);
P'and V';: (0.5(1 + a), 0.5(1 + b));
P'and V'5: (0.5a, 0.5(1 + b)).

Applying the usual chaos game directly to the vertices of a general quadrilateral VoV:V,Vs
(Fig. 5) will only fill it if it is a parallelogram. When the quadrilateral is skew, a fractal
‘Sierpinski tetrahedron’ will result’. If the chaos game is applied to the extended
barycentric coordinates of a general quadrilateral according to the algorithm specified
below, it fills all ‘interior’ points as explained earlier in this section, not now with
uniform density, but still giving weights that lead to easy rendering from vertex colours
or normals.

Set (a, b) to (0, 0)
Loop fori = 1 to a large value
Select j at random from {0, 1, 2, 3}
Case
j=0:seta=0.5a,b=0.5b;
j=1l.seta=0.5(1+a),b=0.5b;
j=2:seta=0.5(1+a),b=0.5(1+Db)
j=3:seta=0.5a,b=0.5(1+Db)

Set P; to have extended barycentric coordinates (a, b)
Plot point P;
End loop

For Gouraud type shading, we have
I(P) = (1 - a)(1 — b)I(Vg) + a(l — b)I(V1) + ab I(V3) + (1 — a)bl(V3),

where I(V;) is the colour allocated to vertex Vi, as above. For Phong type shading,
normals are interpolated by

n(P) = Normalise[(1 — 2)(1 — b)n(Vo) + a(1 — b)n(Vy) +
abn(V;) + (1 — a)bn(V3)].

Shading depends only on vertex values, so is independent of scan line direction, unlike
standard methods. Symmetry of expressions shows that the order of selection of vertices
does not affect shading.

5 An example: Gouraud shading of a cone

We consider Gouraud shading of a cone as a simple example. If the cone is represented
polyhedrally as a pyramid with n sloping triangular faces and a regular n-gon as its base
(Fig. 7), there is a problem of how to allocate surface normals to the triangle vertices
which meet at V. If we average normals for all triangles meeting at this point, the applied
normal points directly out of the vertex along the cone’s axis, giving the vertex an
incorrect flattened shading. Using the triangle’s own normal at V for each triangle avoids
this, but this shows creasing along triangle edges near V, as there is no continuity across
triangle edges. The singular point at V has different normals, hence shading values, close
to'V.




B C

Figure 7. Polygonal approximation of a cone as a pyramid on a regular polyhedral base.

vV, —V,

Figure 8. Representation of triangle BCV as a degenerate quadrilateral.
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If vertex triangles are replaced by quadrilaterals with a zero length edge at V (Fig. 8), the
problem can be overcome. At V), the surface normal is taken as the normalised mean of
normals of faces VAB and VBC and at V; the normal is the normalised mean of the
normals of faces VBC and VCD. If V, and V, are made coincident at V, this gives
continuity at V, avoiding creasing. The now degenerate trapezium V,BCV, has the same
shape as the isosceles triangle VBC. There is still a singular point at V, as more than one
normal is allocated to the same point, with a multiplicity of colour values possible at the
vertex on rendering, but this is anti-aliased by the random nature of the IFS. Figure 9
clearly shows creasing from the standard method and its elimination by the degenerate
quadrilateral method, both rendered using an IFS on an eight-sided based pyramid. (This

image was rendered on a 16 bit machine, so some colour banding is seen).
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Figure 9. Gouraud shaded cones represented as octagonal based pyramids. The left image shows creasing at
the vertex, the right image, which uses degenerate quadrilaterals, has a smoother representation.

6 Summary

A method for using IFS to render non-fractal forms in a way similar to standard scan line
algorithms has been shown. Compared to scan line methods, IFS rendering uses different
algorithms for triangles and quadrilaterals, not dealing with higher orders. The algorithm
selects world points at random, so stochastic anti-aliasing occurs by painting each pixel
with a sample of its possible colours. This is an advantage for still images,
but may give undesirable ‘boiling’ on animation. Standard methods visit each pixel once
per polygon, the IFS method has redundancy, with pixels being visited many times
without a guarantee that all are filled. IFS methods are unlikely to challenge established
methods on speed. However, programming them is relatively simple, with clipping,
hidden surface and shadow problems reduced to simple decisions.

An example using Gouraud type shading on a basic shape is shown (Fig. 9). There
is much scope for extension. Work on Phong type shading with specular highlights and
on texture mapping, for which the method should be particularly suited, is underway at

Figure 10. IFS images showing fractal and non-fractal objects using z-buffer and shadow buffer and showing
the potential of the method for texture mapping.
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the time of writing. As an indication of the scope of the method, two images
incorporating fractal trees (Wit(l)’l non-affine transformations), shadows and texturing (for the
trellis and mown grass effect)'” are shown in Fig. 10.
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